Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Res Microbiol ; 173(8): 103983, 2022.
Article in English | MEDLINE | ID: covidwho-2287502

ABSTRACT

The OsnR protein functions as a transcriptional repressor of genes involved in redox-dependent stress responses. Here, we studied Corynebacterium glutamicum ORF ncgl0127 (referred to as cysS in this study), one of the target genes of OsnR, to reveal its role in osnR-mediated stress responses. The ΔcysS strain was found to be a cysteine auxotroph, and the transcription levels of the sulfur assimilatory genes and cysR, the master regulatory gene for sulfur assimilation, were low in this strain. Complementation of the strain with cysR transformed the strain into a cysteine prototroph. Cells challenged with oxidants or cysteine showed transcriptional stimulation of the cysS gene and decreased transcription of the ncgl2463 gene, which encodes a cysteine/cystine importer. The transcription of the ncgl2463 gene was increased in the ΔcysS strain and further stimulated by cysteine. Unlike the wild-type strain, ΔcysS cells grown with an excess amount of cysteine showed an oxidant- and alkylating agent-resistant phenotype, suggesting deregulated cysteine import. Collectively, our data suggest that the cysS gene plays a positive role in sulfur assimilation and a negative role in cysteine import, in particular in cells under oxidative stress.


Subject(s)
Corynebacterium glutamicum , Corynebacterium glutamicum/genetics , Cysteine/metabolism , Sulfur/metabolism , Oxidative Stress , Oxidation-Reduction
2.
Microb Biotechnol ; 15(8): 2145-2159, 2022 08.
Article in English | MEDLINE | ID: covidwho-1961453

ABSTRACT

The growing world needs commodity amino acids such as L-glutamate and L-lysine for use as food and feed, and specialty amino acids for dedicated applications. To meet the supply a paradigm shift regarding their production is required. On the one hand, the use of sustainable and cheap raw materials is necessary to sustain low production cost and decrease detrimental effects of sugar-based feedstock on soil health and food security caused by competing uses of crops in the feed and food industries. On the other hand, the biotechnological methods to produce functionalized amino acids need to be developed further, and titres enhanced to become competitive with chemical synthesis methods. In the current review, we present successful strain mutagenesis and rational metabolic engineering examples leading to the construction of recombinant bacterial strains for the production of amino acids such as L-glutamate, L-lysine, L-threonine and their derivatives from methanol as sole carbon source. In addition, the fermentative routes for bioproduction of N-methylated amino acids are highlighted, with focus on three strategies: partial transfer of methylamine catabolism, S-adenosyl-L-methionine dependent alkylation and reductive methylamination of 2-oxoacids.


Subject(s)
Amino Acids , Corynebacterium glutamicum , Amino Acids/metabolism , Corynebacterium glutamicum/genetics , Glutamic Acid/metabolism , Lysine/metabolism , Metabolic Engineering , Methanol/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL